	S3 Revision - Volume of 3D Solids	
1	This cylinder has a radius of 9 centimetres and a height of 5 centimetres. Find the volume of the cylinder rounded to the nearest whole number.	2
2	This cylinder has a diameter of 2.4 metres and a height of 3.3 metres. Find the volume of the cylinder rounded to the nearest whole number.	3
3	This cone has a radius of 4 centimetres and a height of 10 centimetres. Find the volume of the cone rounded to the nearest whole number.	2
4	This cone has a diameter of 2.8 metres and a height of 3.2 metres. Find the volume of the cone rounded to one decimal place.	3
5	This sphere has a diameter of 6 centimetres. Find the volume of the sphere rounded to one significant figure.	3
6	This hemi-sphere has a radius of 20 centimetres. Find the volume of the hemi-sphere rounded to two significant figures.	3

7	Cylinder A and cylinder B have the same volume. - Cylinder A has a diameter of 12 cm and a height of 7 cm . - Cylinder B has a diameter of 10 cm . Calculate the height of cylinder B	4
8	A health food shop produces probiotic capsules for its customers. Each capsule is in the shape of a cylinder with hemispherical ends as show below. The length of the cylinder part is 12 millimetres and the diameter of the hemispheres is 8 mm . Calculate the volume of one capsule. Give your answer correct to $\mathbf{2}$ significant figures.	5
	25 marks	

	Volume - Answers These answers use π, if you use 3.14 your answer will still be valid. Failing to round or state the correct units automatically a mark, but this will only be taken off once. If you always forget to round you will not lose 7 marks!	
1	Mark 1 Substitute into the correct formula $V=\pi \times 9^{2} \times 5$ Mark 2 Calculate the answer correctly rounded answer with units $V=1272.34 \ldots$ Volume is $\mathbf{1 2 7 2} \mathbf{c m}^{3}$	2
2	Mark 1 Substitute the radius into the correct formula $V=\pi \times 1.2^{2} \times 3.3$ Mark 2 Calculate the answer $V=14.928848 \ldots$ Mark 3 Correctly rounded answer with units Lose one mark for using the diameter $(2.4 \mathrm{~m})$ instead of the radius $\left(V=57.915 . .=60 \mathrm{~m}^{3}\right)$	3
3	Mark 1 Substitute into the correct formula $V=\frac{1}{3} \times \pi \times 4^{2} \times 10$ Mark 2 Calculate the answer correctly rounded answer with units $V=167.5516 \ldots$ Volume is $\mathbf{1 6 8} \mathbf{c m}^{\mathbf{3}}$	2
4	Mark 1 Substitute the radius into the correct formula $V=\frac{1}{3} \times \pi \times 1.4^{2} \times 3.2$ Mark 2 Calculate the answer $V=6.56802 \ldots$ Mark 3 Correctly rounded answer with units Volume is $\mathbf{6 . 6} \mathrm{m}^{3}$ Lose one mark for using the diameter (2.8) instead of the radius $\left(V=26.27 . .=26.3 \mathrm{~m}^{3}\right)$	3
5	Mark 1 Substitute the radius into the correct formula Mark 2 Calculate the answer Mark 3 Correctly rounded answer with units Lose one mark for using the diameter $(6 \mathrm{~cm})$ instead of the radius $\left(V=904.7789=900 \mathrm{~cm}^{3}\right)$ Lose one mark for squaring the radius $\left(V=\frac{4}{3} \times \pi \times 3^{2}=37.699=38 \mathrm{~cm}^{3}\right)$	3
6	Mark 1 Substitute into the formula for a hemi-sphere $V=\frac{1}{2} \times \frac{4}{3} \times \pi \times 20^{3}$ Mark 2 Calculate the answer $V=16755.16082 \ldots$ Mark 3 Correctly rounded answer with units Volume is $\mathbf{1 7 0 0 0} \mathrm{cm}^{3}$	3
7		

8 Mark 1 Find the volume of sphere $\quad V_{\text {sphere }}=\frac{4}{3} \times \pi \times 4^{3}$
Mark 2 Find the volume of the cylinder $\quad V_{\text {cylinder }}=\pi \times 4^{2} \times 12$
Mark 3 Know that the volume of the capsule is found by addition $V_{\text {sphere }}+V_{\text {cylinder }}$
Mark 4 Carry out all calculations correctly, give all your answers in unrounded form where possible

$$
\begin{gathered}
V_{\text {sphere }}=268.083 \ldots, \quad V_{\text {cylinder }}=603.186 \ldots, \\
V_{\text {capsule }}=V_{\text {sphere }}+V_{\text {cylinder }}=871.269 \ldots
\end{gathered}
$$

Mark 5 Correctly rounded answer with units

$$
V=870 \mathrm{~mm}^{3}
$$

You can lose one mark for:

- Using the diameter of 8 cm rather than the radius of $4 \mathrm{~cm} \quad\left(4557.4 \ldots \mathrm{~mm}^{3}\right)$
- Rounding too early in your calculations

